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Abstrad-A general and simple method is presented for the determination ofstress intensity factors
in elasticity problems involving several interacting cracks and complex crack shapes. The method
uses a superposition scheme and an approximation of certain unknown crack-line tractions by a
series of base functions. Crack interaction is accounted for by the stresses generated by an isolated
line crack at a location of another crack when the former is subjected to the combination of base
functions. The crack-line tractions are determined from the solution of a system of linear algebraic
equations. Several examples which illustrate special forms of the method are presented. These
include contiguralions like H-erack shapes motivated by studies in fracture of fibrous metal matrix
composites. Comparison of results with available solutions shows that the method gives accurate
results even whcn very fcw basc functions are selected in the analysis.

I. INTRODUCTION

There ure severnl situations in fracture mechanics which involve a complicated arrangement
of cracks that is not umenuble to a simple method of analysis. In some cases. the dillieulty
lies in huving many cracks interacting with each other. e.g. when a single crack is embedded
in a microcraek arruy. In other cases. as in crack branching phenomena. the complexity of
the problem is due to the presence of irregular crack shapes consisting of several segments
which form what is sometimes culled a zig-zag or nonline.ir crack. In relatively simple
situations of multiple cracks. such as aligned cracks und crack branches. classical methods
of analysis arc applicable and they lead to elegant exact solutions. e.g. Erdogan (1962). Sih
(1965). However. approximate methods are unavoidable in more complicated situations.
Some existing studies have employed the representation of cracks by dislocations
(Chudnovsky £'/ til. 19~7a.b; Vitek. 1977). which leads to integral equations which can be
solved in an approximate way. Other investigations of zig-zag crack configurations use
methods based on polynomial approximations and truncation of a conformal mapping
function (Kitagawa and Yuuki. 1975. 1978). A particularly simple treatment of crack
interaction phenomena has been introduced recently by Kachanov (1985, 1987) who showed
that many multiple crack problems can be solved with the help ofa superposition procedure
which leads to a system of linear algebraic equations for' certain equilibrated crack-line
tractions. Another variant of a crack interaction method is given by Horii and Nemat­
Nasser (1985) where inhomogeneity problems are also treated.

This paper presents a general and simple method for computation of stress fields and
stress intensity factors in linear elastic media which contain several cracks arranged in a
complicated configuration. The method uses a superposition technique which replaces a
configuration of N cr:lI:ks by means of N different problems. each involving an isolated
crack located in an infinite medium and loaded by unknown tractions. Such representations
were used by Collins (1962). D:ltsyshin and Savruk (1973) and more reccntly by Gross
(1982). Chudnovsky and Kachanov (1983). Chudnovsky e/ al. (1987a.b), Horii and Nemat­
Nasser (1983. 1985) and Chen (1984). In the present work a polynomial expansion for the
unknown crack line tractions allows one to choose the number of suitable polynomials
required for any desired accuracy. Once the approximating polynomials. called base func­
tions in the sequel have been chosen. and the stress field due to a single crack in an infinite
medium loaded by any such function is known. the problem reduces to the solution of a
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Fig. I. &:hel1latic of superposition of two align~-u cracks in an infinite isotropic medium. loaded by
normal tractions applied symmetrically at the fa~"Cs of the cracks.

system of linear elluations for ccrtain unknown coellicients. We show th.tt K.ldlanov·s
interaction scheme is a spedul case of the theory proposed hcrein, and that it corresponds
to the c.lse in which the unknown crack-line tractions arc approximated (lilly by their
averages. In what follows. the method is formul'ltcd in the context of two-dimensional
isotropic elasticity. but it can be readily extended to anisotropi\; media .Illd 'Ipplied. in
principle. in three-dimensional problems.

The lirst section of the paper exposes the essence of the method by .In examp!e of its
.tpplication to the simple case of two aligned cr'lcks for which .111 exact solution actually
exists (Erdogan. 1962). The second section describes the implementation of the method in
the more complicated Case of three cracks arranged in an H-crack configuration. The
motivation for analysis of this problem will become evident in the companion papers in
which the solution of the H-crack problem is employed in analysis of discrete plastic shear
zones that arc found at notches in fibrous metal matrix composites. [n the last part of
the p'lper. the method is used to evaluate stress intcnsity factors in the following crack
configurations: (a) an H-crack loaded longitudinally. (b) an H-~rack loaded transvcrsely.
(c) two parallel cracks under transverse normal stress. and (d) a T-craek loaded in tension.
The results arc compared with those which have been obtained in the literature with other
approaches. such as dislocation distributions and conformal mapping techniques.

2. A SIMPLE EXAMPLE

The essential features of the method proposed herein C'1I1 be illustrated by an example
in which we consider two aligned cracks in an infinite isotropic medium. loaded by normal
tractions applied symmetrically at the faces of the cracks (Fig. I). Let the length of the
cracks be 2d. (7 = I. 2).t and let ( denote the distance that separates the adjacent crack
tips. Define local coordinate systems (:CI.Y.) at the midpoints of the two cracks and apply
normal stresses p~(x.) which are symmetric with respect to the plane of the cracks. The
tructions will be taken as negative when they open the crack and vice versa.

The two-crack problem of Fig. I can now be formulated as a superposition of two
different problems in which each crack is regarded as a single crack in an infinite medium.

t The indices :x or Pdenote quantities belonging to either crack. and assume values I or 2 in this section.



On interacting cracks and complex crack configurations in linear elastic media 1281

loaded by unknown surface tractions P# which are to be detennined (Fig. I). In the first
problem. let P I ~ be the stress at the imaginary location of crack 2. caused by an unknown
traction PI applied at crack I. In the second problem. let P~ I be the stress at the imaginary
location of crack 1. caused by an unknown traction p~ applied at crack 2. For a super­
position of these two problems to represent the solution of the original problem of Fig. I.
it is necessary to assure that

pHxl) = PI(XI)+P~I(XI)

p'Hx~) = P2(X2)+pdx~).

(Ia)

(Ib)

The unknown functions p. will be estimated by a series of base functions which can be
conveniently represented by Legendre polynomials

N

P",(x",) = L a~'l[ - L~"( ~",)J
IJ-O

(2)

where .;. = (x./d.). a;:l are unknown coefficients and L~" are the Legendre polynomials
defined by

L ( ,'1:) - _1- _~-=-(.'I:2_I)n n - 0 I , 3
" .. -,,, I d.'l:" .. - • •-. • .•_ n. .. (3)

In accordance with the adopted sign convention. the minus sign in (2) has been introduced
to indicate that em:h base function loads the crack in an opening mode.

Dc/inc now by j;::' the stress resulting in the im:lginary loc'ltion of cr:tck ~ when crack
It is louded by -L~{fl(e{l)' Since the functions L" :Ire polynomklls. the inl1uence functions
.t;l~'i (x.) e.m be gcncmtc..-d without much diUiclllty by using the solution of .. single crack
locuted in an infinite medium and lo..ded by concentrated unit loads (sec the Appendix).
The functions !J/I" ure therefore given by

N

( ) _" ({llj"''') ( )P/1- X" - t... Un /1- X••
".0

(4)

F'inally. let the original loads on the crack surfaces be tractions resulting in an opening of
the crack so th..t

Substitution of (2). (4) and (5) into (I) provides

N N

L a~I)L~l}(''(dd,) =(ii(x,) + L d,/'ft.'(x.)
'1.0 n- 0

N N
" 121L{21( ! f ) _ "( )+ ~ III J1"I( )t... an " X2' 2 - (i2 X2 t... a" J 12 X2 •

" ... 0 " .. 0

(5)

(6a)

(6b)

Ideally. eqns (I) should be satisfied pointwise. but in what follows they are satisfied
only approximately. If the summation in (6) is truncated at a finite N. 2N+ 2 equations for
the 2N+2 unknowns a" can be obtained in the following manner. Multiply (6a) by the
Legendre polynomial Lj(xi/d\). wherej =0•...• N. and integrate from -d) to +d, :
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Using the non-dimensional coordinate ~I = xi/d, and the orthogonality condition of the
Legendre polynomials

provides N+ I equations

,v

d,[2aJ ll /(2j+I)J =Sij + L F~1·ila~:1
n=O

where

f l-d' f+d'S;, = l1'i (xl)Li(XI/d,) dx,. F~"iil = l~":(x, )L,(XI/dl ) dx l .

".--,/,

A similar pro~cdure applied to equation (6b) yields the additiomll N + I equations

.V

d:[2aFI / (2j+ I)] = S'Zi + L Fli·J}a~ Il
,,~II

where

(8)

(9)

( 10)

( II )

(12)

Equations (9) and (II) can now be solved for the 2N+2 unknowns a),·I. Then. stress
intensity factors at the tips of the two cracks and the stress field can be obtained by reference
to the original superposition scheme of Fig. I and eqn (I).

The stress intensity factors at the four crack tips follow by integration of the well
known expression which gives this factor for a single crack loaded by a concentrated unit
load. For example. for crack lone obtains

(13)

where 0'(1 I). as expl,lincd below. is given by the right-hand side of (6a). and the + and ­
signs correspond to the values of K1 at the right and left tips. respectively.

The stresses induced by the two loaded cracks at any point in the elastic medium can
be found. in principle. as a sum of the stress induced by crack I loaded by PI (x I) plus that
due to crack 2 loaded by P1(Xl)' However, since eqns (6) are not satisfied pointwise. the
option arises whether the left- or the right-hand side of (6) should be used to represent
p.(x.). To clarify this question. suppose that only one term is used (N = 0) in the series
(6). [n this particular case. the right-hand side of (6) describes loading of the crack by the
originally prescribed tractions and by the nonuniform stress which is induced by the presence
of the other loaded crack. while the left-hand side of (6) represents loading of the cracks
by constant stresses which are the averages of the two preceding terms at each crack. Under
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Table I.

Kt/p" J';d at inner tip KdpP" ted at outer tip

Kachanoy's
Exact results predictions

Erdogan Kachanoy Present
J =(l2),(I21+2d (1962) (1985) predictions

0.01 2.371 2.138 2.390
0.001 5.395 HOI 5.534
0.0001 13.347 4.731 11.646

10- 0 93.03 7.309 26.320

Exact results
Erdogan
(1962)

1.184
1.244
1.280
1.321

Kachanoy's
predictions
Kachanoy

(1985)

1.175
1.214
1.227
I.:m

Present
predictions

1.186
1.261
1.325
1.379

such circumstances. loading of the cracks by the right-hand side terms of (6) appe'lrs to be
preferable both in determination ofthe local stresses. and in evaluation of the stress intensity
factors in (13).

The results predicted by the above analysis for the case of equal length cracks
(d l = d! = d) loaded by a uniform load pO are illustrated in Table I. where a comparison is
also presented with the exact solution Erdogan (1962) and the predictions of the Kachanov's
method. Our results were obtained with five approximating polynomials. and as mentioned
above. Kachanov's results correspond to the case of N = O. The cracks were chosen very
close to each other to allow a strong interaction. At .l value of <5 =0.01. the present
predictions arc excellent. Even for <5 = 0.00 I. the error at the inner crack tip docs not exceed
2.6%•. As expected. the accuracy decre.tses when the cracks approach each other further.
es(X'Cially for the stress intensity factor <It the inner tip. It is interesting to note however that
when the cracks <llmost touch each other «5 = 10 h) the error for the stress intensity factor
at the outer tip is only of the order of 4%.

In conclusion of this simple exposition of the proposed superposition method. we note
that it is not necessary to usc only the Legendre polynomials to approximate the unknown
tractions p•. Indeed, in the examples which follow we show that symmetric craek con·
figurations. such as the f1- and T-cracks. suggest the usc of other base functions which can
he incorporated in the solution. It is finally noted that crack closure elfects have been
disregarded in the present paper.

3. ANALYSIS or THE METHOD

The procedure outlined above can be readily generalized to the case of many interacting
cracks which arc distributed in a specified manner in a plane. or in a three-dimensional
solid. We limit our treatment to the plane case. In particulur, consider M interacting cracks
in the x.r-plane. The cracks arc no longer aligned in any special way, and each crack can
assume any given orientalion with respeet to the coordinate axes. Let d. denote the half­
lenglh ofcrack ~, and let x•.v. denote the local coordinale system of each crack positioned
al Ihe mid poinl of each crack with Y. =0 denoting the crack plane. The Greek leiters :x
and fl will be used to denaIe individual cracks such that IX = 1,2•. , .• M. and fl = 1.2., .. , M.
:x #= 1/. Each crack is loaded by prescribed tractions; in the local coordinalc system of each
crack. P~ (x.) will denote the normal component and s'; (x.) the shear component of the local
traction. As before. the tractions p;(x.) which result in an opening mode will be taken as
negative. The .V;(x.) traclions will be negative when the tractions at the upper face (y = 0+)
of the crack point in the x.-direction.

The solution of the many crack problem can again be found by the supcrposilion of
N different problems in which each crack is regarded as a single crack located in an infinite
medium and loaded by unknown tractions p.(x.) and S.(x.) to be determined. Let PfI.(X.)
and sp.•(x.) denole the normal and shear tractions respectively which are caused at the
imaginary localion of crack ~ by tractions Pp(xp) and Sp(xp) applied at the surrounding
cracks, fl. :x #= fl. Therefore in analogy to (I). the prescribed tractions at each crack are
expressed as follows:
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M

p~ (X,) = P, (X,)+ L PP~ (X,)
/l-I

.~f

S~ (X,) = S, (X,)+ L Sp~ (X,). :t -# p.
P-I

(14)

The tractions P,(x,), S,(x,) are expanded in the local coordinate systems x, in a series
of base functions which we chose again to be the Legendre polynomials (3):

N

P, (x,) = L a~')[ -L~·)(~.)]
n-O

N

S. (x,) = L b~"[ - L~" (~,)]
n=O

( 15)

where ~, = x,/cI,. Other suitable base functions may be chosen as needed.
Next, influence functions are defined such that they describe the tractions at the

imaginary location of the crack :t, caused by the base functions - L~/I)( ~/I) applied ut crucks
(J. Four such functions are needed. The function /0':.) represents the normal stress on the
imaginary location of crack :t due to the presence of a solitary crack (J which is loaded
normally by a base function of order fl. In this spirit, we state schem'lticully the following
definitions:

fil:) (x,) is normal stress induced at location ~ by a normal stress applied ut cr.lck II;
gi,;1 (x.) is shear stress induced at location IX by a normal stress applied at crack II;
1It\;' (x.) is normal stress induced al location IX by a shear stress applied ut crack II;
lIll:' (x.) is shear stress induced at location IX by u shear stress applied at crack (J.

These definitions lead to equations which are anulogous to (4):

ill

"

(\:) - , (a(ll'f'(n, (\: )+h 1111 ,,(n) (\: »/I,',-t- nil." n I"'"
n-{)

N

, (.) _ , «(/1) (n) ( ) + h (/1) In) ( »
'\/1, x, - t- tI" fhl. X, ,,(jIlt X. .

,,-0

Using (15) and (16) one C.lll rewrite (14) in the form:

(16)

N M N

p~ (x.) = L tI~"[ - L~" (~,))+ L L (tI~fI) fJ:) (x.)+b~JI) "/1:1 (x,)}
".0 11= 1 ".0

N M N

s~(x,)= L h~'l[-L~')(~.)}+ L L [tI~Jl)g~;'(x.)+b~JI'q~~I(X,)} (17)
,,·.0 /I-I n-O

with II -# IX.
Now, each equution is multiplied by Lj(e,), j = 0, 1,2, ... , N, and integrated with

respect to x, in the intervul from - d. to +d•. With the help of the orthogonality condition
(8), which can be easily adjusted to the indicated interval, one finds

M tV

p~j) = -a:·I [2d./(2j+ I)} + L L (tI~Pl FJ:,i) +b~fI) lJ~;,j)]
/l-I n-O

M N

s~J) = -h)"[2d./(2j+ 1)]+ L L (a~/Il GJ:,j) +h~/I)H~;,il]
/I-I n-O

where the following definitions huve been introduced:

(18)

(19)
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{ill} J"'d, {p"(Y: )}
j'lI::: ,,: .• L~"(X./d.) dx,

5i -d. s. (x,)

and the formula

1~1l5

(20)

(21)

where Z1J:·}1 assumes. in turn. the values of fl:,}l, nJr.·}). G$:·}l and Q$:'}). while =~:l assumes.
in turn. the values of j~:l. hb:l • gb:t and qJ;I,

We now recall that :x= 1.2•...• M; p= 1,2..... M; j:::0.1.2•...• N: and
n ::: O. 1.2..... N. Therefore (18) and (19) are the required 2M(N+ I) equations for the
M(N+ I) unknowns art. and the M(N+ I) unknowns WI, which are needed to find the
tractions PilI and Sill in (16).

As pointed out at the end of Section 2. the stress intensity factors at each crack :x and
the stresses in the vicinity of the crack should be determined by regarding each crack as a
solitary crack in an infinite medium loaded by surface tractions given. in amllogy with (6).
by the differences between the terms p; (x,). or s~ (x,), and the second terms on the right­
hand sides of the respt.'Ctive eqns (17).

4. THE "·CRACK

The results of the previous section arc implemented here to analy7.c an U-cr'lck
configuration consisting of three mutually perpendicular eracks (Fig. 2), In this implemen­
tation the single H-eraek is represented by three line cracks which touch each other. This
representation will result in the usual stress singul.trities ut the points at which the three
cracks touch each other. no m.tller what is the distunce of separation and thus would give
unre.lIistie results at that loe.ttion. However. the change in the actual geometry of the
problem makes it possible to usc the present method for evaluation of the stress intensity
factors at the tips of cracks 2 und 3. These arc of interest in applications of the present
method to certain fr.u.:ture problems in fibrous metal mutrix composites. Comparisons with
other solutions shown in the sequel indicate thut the method givt.'S good approximations of
these stress intensity t~lctors,

In Fig. 2 the middle crack of length 2L is denoted by the index I. and the right and
left cracks of length '2R by indices '2 and 3. respectively. Local coordinates (x••Y.) are
defined at the ,"'Cnter ofeach crack. The solution will be sought for certain symmetric ovemll
loads which can be reduced to the normal and shear tractions indicated in Fig. 2b. The
normal and shear tractions .tre denoted by p~.s';. where C( (or fJ) = L 2. 3. and arc applied
symmetrically to both faces of each crack. They satisfy the following conditions:

®

I
J r

y. x, J r

~.
J r

y. J t
2R

0 1l
2L 1 l

I 1l
I l

(a) (b)

Fig. 2. Symmetry of geometry and loads in an H-crack type configuration.
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P~(X2) = p~( -X.). ~ = 1. 2. 3; pi(x~) = p'i(x;) at Xl = :'3;

s';(xd=O; .f.(x.)=-.f.(-x.); :x=2.3:

s'Z(X2) = -s')(X3) at X~ = XJ. (22)

With reference to (IS). we now select the representation of the functions p.(x.) and
S.(x.). The forms that reflect the symmetry conditions (22) are

P",(X.) = L a~·)[-L~·)(~.)l :x=1.2.3
n-O.2.4....

S2(X~) = L Wl[ -L~2)(~z)1
,,--1.1.3....

S3(X3) = L b~3)[-L~3(~3)]
If. -1.1.3•...

(23a)

(23b)

(23c)

where ~ I= xtl L. e2 = X2! R. e3 = X3! R. For n ~ O. the functions L.(~.) are the Legendre
polynomials (3). but for n = - I. ~ = 2.3. we choose the function

LI.)(=)={+1
-I 1,. -I

for 0 ~ e. ~ I
~ = 2.3

for -I ~ e. ~ 0
(24)

which. of course. is not a Legendre polynomial. It has been introduced to allow for the
possibly discontinuous shear stress distribution at the mid-points of the side cracks. We
(1150 note that due to the assumed symmetry of the loads (22), the p. is symmetric in ~••
and thus was represented only by Legendre polynomi.ds of even order; S•• on the other
hand. is anti-symmetric with respect to e". ~ = 2.3. rurthermore. the absence of external
shear loads on crack I. and the presence of symmetric loads on cracks 2 and 3 induce no
shear stresses on crack I. which implies that S 1 =O. Note also that the base functions on
cracks 2 and 3 have bl.'en chosen as mirror images of each other. That. together with the
symmetric external loads implies that:

a~2) = a~J) n =O. 2. 4•...

b~2) = b~ll n = - I. I. 3•.... (25)

The next step in the solution is the evaluation of the inlluence functions which is
outlined in detail in the Appendix. With reference to (16) and (23) we have for crack I

PPI = L a~PlfJi)+ L h~Plh}?t'.
".. o. 2..... ,.. If .. - l. I. J

,t = 2.3. (26)

Substitution of (26) and (23a) into (I7a). with ~ = I. gives

p';(xd = L a~Il(_L~ll)+ L L a~lllj;il+ L
,. _ o~ 2.4,. .. fJ - 2.) " ... O. 2.4,. ,. IJ .• 1.) It ,.,

L W'hi71. (27)
1.1 •.1, ..

By the prescribed symmetry. all the functions in (27) nre even in Xz. The last equation will
now be multiplied by L}ll.j =0,2,4, ...• and integrated from 0 to L. That gives the specific
form of equation (18):

with j = 0.2.4•... and the coefficients being given by
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pI!) =rp'i(XI)[L}Il('~I/L)] d.~1

Fp"jjl = r.m1(Xl)[LJll(Xt/L)] d.t'I, /ffJ"jj) = rhp71(Xl)[L)1l(Xt/L)] d.t'l' (29)

Note here that all Legendre polynomials in (27) are even in x I. hence their orthogonality
property is implemented by integration of (8) from 0 to L.

We now turn our attention to crack 2. and consider first the normal stresses. A
treatment similar to that leading to (18) or (28) gives

(30)

withj = 0.2.4•.... and with coefficientsp}!l, Fh"iil. ErN1 given again by (20) and (21) where
the integration is this time from 0 to R and IX = 2.

The shear stresses on crack 2 follow from the appropriate form of (17) which in the
present case becomes

.~;(x")= L W)(-L~~l)+ L L a~JlIg~"!.+ L h~J)ql\"l.
"~-I.I.J.... 11-1.)".11.2.4.... "" .. I.I.J....

(31)

A t this time however. all the functions appearing in (31) arc anti-symmetric in x". and L' =\
is not a Legendre polynomial. Rut the procedure remains much the same. with the following
dilferences. E{luation (31) is multiplied by L,("} = - I. I. 3..... respectively. and integrated
with respect to x" from () to R:

S'P = llJ+ L L (J~J/)GW)+ L h:, 11 Q\ni II

fJ~ 1•.\ n-().~.4.... "_ .. 1,1, .1 ....

with; = -I, 1,3......lOd

q_1 = -h_IR- L. ~R h~2)L~~}(X2/R)Ll!Hx2/R)dX2
n- I • .1.. J~

(32)

(33)

(34a)

Finally.

(35)

From the invoked symmetry conditions of the problem. and in view of (25). the
fulfillment of (28), (30). and (32) ensures that the equilibrium conditions on crack 3 are
automatically satisfied. It is finally noted that the series (23a) can be truncated at 11 = N for
:x = I. and for n = M :F N for IX = 2.3. depending on the geometry and the boundary
conditions. In the actual computations described in the sequel, we choose n = 0.2.4 for

v.s U:t1·O
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a~ll; n =0.2 for a~~); and n = -I, I. 3 for b~~l; hence the solution of the H-crack problem
was found from only eight linear algebraic equations for the eight unknowns a:: l , b~·).

Once the unknown coefficients have been detennined. the stress intensity factors at the
tips of the H-crack can be found in analogy to (13). For the tractions on the faces of crack
2. for example.

p~(X~) = -O"Z(xz), (10 > 0

s'i(xz) = -t~(X2)' l''' > O.

The stress intensity factors Kt and Kn at the upper crack tip in Fig. 2 are given by

{K(} =_I f" R !ii."+r {(1(t)} dt
Kn J;R -R ..; R=t t(t)

with

(36)

(37)

(38)

5. NUMERICAL EXAMPLES

We now proceed to present the stress intensity factors for the H-cruck and for severul
other crack configurations which were obtained from the method proposed herein. Com­
parisons with other solutions will be also shown.

5.1. All ll-era,'k llIul,'r uniform (lxial normal stress
Figure 3 illustr.ttes the cruck configuration and the loading conditions. and present the

stress intensity factor results. These arc the AI and Kn f.tctors at the upper tip A of crack
2. The figure also shows a comparison with the results found by Vitek (1977) who modded
the cracks by a distribution of dislocations. The stress intcnsity factors are given for ratios
of R/L from () to I(); such ratios arc often found in the composite fracture problems
mentioned earlier. This contrasts with most other solutions in the literature which are
concerned with crack branching phenomena that involve only small ratios of R/L. Vitek's
solution is exceptional in that regard. and thus provides an opportunity for comparisons

050....---.-----....,---......-----,

/- ....,,~~_~K" (AI/K,0,40 ---- _

0,30

-
~ 0,10

i p_1
-presenl analYSIS

----v, VITEK (1977)

K. (A)/K.

·020'--_-'-__......_--'-__......_--'

Fig. 3. Comparison of K1 and KII for an H-craek under uniform normal stress at infinity.
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in the wider range of RiL. Both in this case and in those which follow. the series in (23a)
was truncated at n =4 for:t = I, at n = 2 for:t = 2.3. and n = 3 was used for (23b.c). That
resulted in eight simultaneous equations for eight unknowns. It is noted that the success of
the method is more pronounced in predicting the dominant stress intensity factor KII . It is
presumed however that a higher number of polynomials would have resulted in better
accuracy. A negative value in K1 is of course to be interpreted as the closure of that crack
for the corresponding loads. a phenomenon which as mentioned above was not accounted
for in the present study. These negative values however are useful when using a superposition
procedure for a different set ofloads.

5.2. An H-crack under uniform transrerse normal stress
Figure 4 indicates this loading configuration and exhibits the predicted results for the

dominant stress intensity factor KI at the tip A ofcrack 2. A comparison is shown with the
results obtained by Kitagawa and Yuuki (1978) which used a conformal mapping technique
(see also the handbook by Murakami, 1987. p. 389). The stress intensity factor KII which
was reported in this last reference to be negligible and was not matched accurately by our
predictions (I KlIlp"'"~ I ~ 0.1). Given the small value of this quantity however. no effort
was made to improve the agreement by increasing the number of base functions.

5.3. Two parallt'! cracks under tt1t~rorm tranSI'erse normal stress
This is .1 special case of the H-crack configuration in which the middle crack has been

eliminated. Figure 5 shows the results. and also a comparison with the values reported in
Isida (1972). which were found using the series expansion of complex potential technique
(see also the handbook by Tada ('/ al.• 1985. pp. 14-17).

504. A l'..erack c01!Ii.quration
Figure 6 shows the crack configuration and loading condition and presents the pre­

dicted results comparing them with those given by Kitagaw,l and YlIlIki (1975). It should
be mentioned here that since the T-crack has only one plane ofsymmetry the implementation
of the method required some changes in the procedure described in Section 4. The approxi­
mating polynomi.l!s for the horizontal crack now were not (L~II. L~II. L~") out (L:," . L\II, L~'».

CONCLUSION

The outstanding advantage of the method presented in this paper is its simplicity. Once
the stress tields generated by a solitary crack under power type tractions arc found, the
implementation of the method necessitates only the solution of a set of linear algebraic
equations for the unknown coet11cients.

The presented examples show that the method predicts accurately stress intensity
factors in multiple crack problems even when the cracks are very dose to each other.
Complex crack patterns, such as the H- and T-cracks arc dealt with successfully by co­
alescing line cracks into desired configurations. As expected, the stresses at the points of
coalesccOl.:e arc not well described. but the stn:ss intensity factors at the tips of interacting
cracks arc predicted with remarkable accuracy even when the tips arc in close proximity.
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APPENDIX

In this al'pendi'l. analytic..1expressions will be deriwd for the stres..~ fields generat~-d by a single crack located
in ;In inlinite isotropic medium ;lIId suhj..'l.:t.....1 to ccrl;\in lu;\(ling distributions. Sfl\.'l.:ilic..lly. the results of this
appendix will be uscd hI generate the inl\ucnce functiuns};::' • .q/C). h;;;'. q/J:).

Consider a single crack (If Icnglh 2Ilucated in an isutropic medium. Let the crack be suhj..'l.:Il....1tu concentmt..-d
normal ;lIId shc.. r luads I' and Q ;IS s..'Cn in Fig. (A I).

A coordinate system (x.y) is I"c;lted ;It Ihe middle of the cf;lck and Ihe concentmt..-d Iooids ;\I'e ;lpplied ;It
(t. 0). Sin~'I" thc luads I' and Q as HPpc;lring in Ihat figure result ill ncgative nortrull ;lnd she..r slresses re.spectively
adjacent III the puint of ..pplication. Ihey will be as.sign~-d negativc values P < o. Q < O.

The stress lields n... n... n u' in generalized planc strcss ean be found from a pair of complex potential functiuns
.1' and U as f"lI"ws (sec for eX;Hnple Erdogan. 19(,2).

a.. +a" = 4Re (1/1(:)1

tr" -a•• +2ia.y = 2«=-;)11"(:) -t/J(;) +0(;»)

",hcre Ot:) in the ..bove el.luatitln is defined ..s

0(;) = nt'=l

wilh Ihe funclions r/>. nand ,p' <Ire being given by

y

+P
a

-x

I • 21 ·1
Fig. A I. Geometry uf a sulit<lry crack in an infinitc medium loaded by eonccntrated unit loads.
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The above equations provide a framework for the derivation of the appropriate stress functions for the case of a
single crack loaded in mode I or mode II by a given dislribution of normal and shear loadings. respectively. In
the implementation of the crack interaction scheme which has been formulated in this paper two kinds of
distributions will be needed: (a) power-type loadings (uniform. linear. quadratic. cubic, and quartic. etc.), (b) a
piecewise constant loading in shear. Stress functions for the former category can be derived by following a
procedure of contour integration. The stress function for the second type of loading can be obtained after a
somewhat cumbersome integration procedure leading however to a rather simple result.

IA I) Stress functions for power-type IQadings
Results will be giv'en for the following loading cases;

Polt) = so(l) = -I p,(I) = s,(t) = - 0) p:(r) = s:(t) = - OJ
P,(t) = sJ(t) = - OJ P.(t) = 5.(t) = - (1J. (A5)

Fl'r the case of normal loading pet) = -f(t)./(f) > O. for example. the corresponding <p(:) is given by integrating
the expression (A3) as follows;

.I. I I" [/(t») • .,'
~,(:) = --,--.-, --(I'-f')' df.

:!It(:' -I')" _I (:-t)
(M)

If((I) is a polYllllrnial ,IS is in the case of (A5). the integration of the definite intcgral (A6) can be carried out by
a method descnl>cd in Muskhelishvili (1953).1'.455. We tirst write (A6I in the limn

f'" (t~ -/~)':
1(:) -~ f (t) dt.

I . (t -:)

For l:Ir!o'C I let.

I I
f(t)(t~ -/:)'~ = %,,r' +%" ,f"1 + .. , %11+-% 'i +% : ii +."

where 1/ and %, arc eunsl;lIlls, It can now oe pmven (sce Muskhclishvili. 1')53) lhat

Fur cx.unple in the easc of/If) '= I. 1(:) is givcn

1(:) = Iti[(:~ -/~)': -:1

and in thc case of/It) = IiI, wc have

It; [. ,,, , I~J1(:) = I (:--1')":-:-+ 2 '

(A7)

(AX)

(A9)

(A (0)

(AliI

(AI2)

l.et us now ,knote oy t/I~", O~" the potential fum:tions corrcsponding to norm:ll lom.ling of type j :lS given in
equation (A51. (j = n. uniform j = I. line;lr etc.). The potenti;d functions corresponding to she'lf lo.ulings will
simil:lrly I>c denoted by r/J: i1, 0:", The highest order b'lSt: function ( - L.( ~)) in this paper was with" =4. The
eorrcspondingpotentials functions could Oc derived by me;lns of

and

,"~"' =0:,0' = [:!(::-/:)':) '[:_(::_1'1' 'I
,p~ 11 =: n~" = rye:: -I:)':)' '[:: -:(:' -1')" - (I'/:!)I

</J~:' =0:,:' = [Y:(:' -/~)' ') -l[:'_:'(:' _/~)u -1:/'/21)

r/J~ l> '= 0:," = [21'(:' _t' )' ') -'[:. -:'(:: _I:)' ~ -(1::'/2)- (1·,1<1'

"'~ .. = 0:," = [Y'(:'-I')' :)-I[:'-:·(:'-/:)"-(/::-'/:!)-V':i8Jl (AD)
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!P:" =~' = - i!P:!'

(A.2) Piecewise conslant shear loading
We consider here a she-.lr loading as follows:

1293

(AI4)

0"1"1
-I" 1 "0.

(A1S)

Again by integration of equation (3) the potential !P: is given by

The indefinite integral

can be evaluated by transforming it first into ( = 1-;:. which results in

and thcn using the formula (Bois. 1961)

(AI6)

(AI7)

(A1S)

Idenlifying II = -I. b = - 2;:, (. = - (;:l_t l) finally pr{lvides

(

'l' 'l 'l'!' " "t""~'--")• l l Ll " . TO', '.l l Ll J'-~;:I-_Iv'(:'-I')( '-t')
J( •• 1l ~ (f -t) +.Iln [-2/+2Ij(-t 1+1(. -( ). In ..__ ( .. _.. - _ ..

t-;:)

leading to

(A21l)

(A21)

wilh nO(:) = ,pO(:).
II is of interest to noIe lhat as ;: -- 0, .po (;:) exhibits a logarilhmic singularity resulting in a singularily of lhe

same kind in the slr~'Sses.

The int1uencc functionsJ;:', g!i:', hlhl , q}~1 can be obt'lined through the usc of (AI3). (A21) and (A I).


